

Safe Harbour Statement

Cantargia – Opportunity to save lives and create value

- Potentially more effective treatment against novel target in clinically validated pathway
- First in class platform technology against novel target
- Well financed to build a broad, diversified pipeline
- Right team and clear plan to position our projects and maximize value

Cantargia highlights

UNIQUE IMMUNOTHERAPY ANTIBODY CAN04 IN PHASE IIA CLINICAL DEVELOPMENT

- Positive interim data set response rates higher than historical control
- First in class antibody with broader MOA than competitors

VISION OF BECOMING AN IMPORTANT PART IN FUTURE CANCER TREATMENTS

Combination strategy based on synergies with established therapies

PLATFORM WITH MANY POTENTIAL THERAPEUTIC AREAS

- Target IL1RAP found on most solid tumor forms and leukemia
- IL1RAP signalling (IL-1, IL-33 and IL-36) in large number of diseases

HIGHLY RELEVANT RESEARCH WITHIN CLINICALLY VALIDATED MECHANISMS

Focus on opportunities with major unmet medical need

ROBUST PATENT PORTFOLIO

 Global patent families on IL1RAP as antibody target in oncology until 2032 and CAN04 until 2035

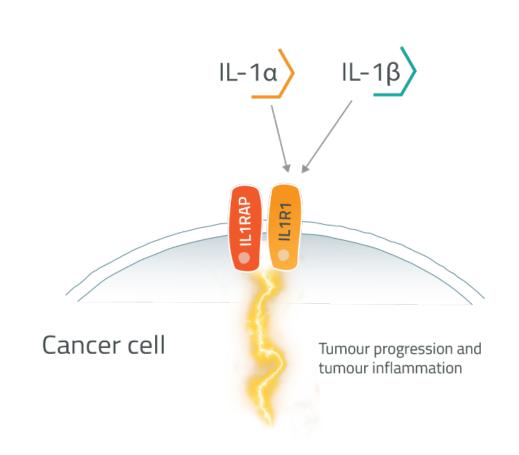
NASDAQ STOCKHOLM MAIN LIST ~10,000 SHAREHOLDERS AND LONG TERM INVESTORS

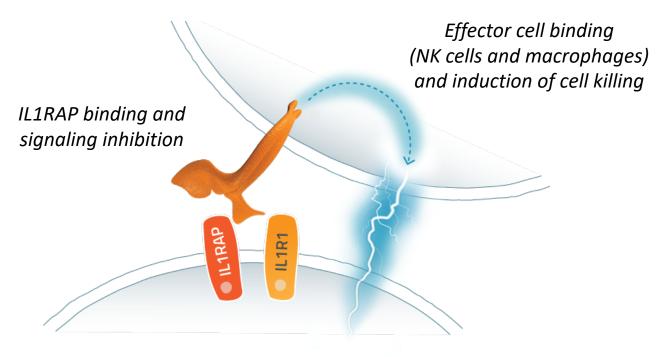
- Market cap: SEK 3.3bn (USD ~400m) (19 May 2021)
- Cash: SEK 903m (USD 108m) (31 Dec-20)

Current owners (31 Mar 2021)			
Swedbank Robur Funds	9.7%		
4th AP fund	7.7%		
Alecta	6.8%		
1st AP fund	6.3%		
Six Sis AG	5.5%		
Avanza Pension	3.9%		
Handelsbanken fonder	3.1%		
Sunstone LSV	3.0%		
SEB AB, Luxemburg	2.7%		
Morgan Stanley	2.0%		

Todays program

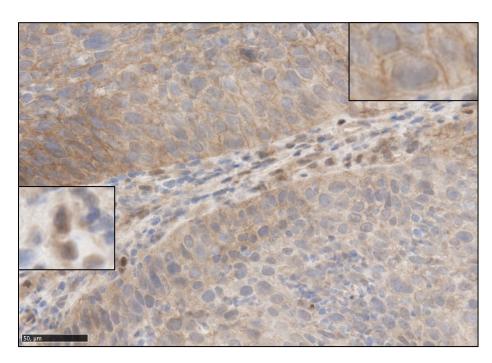
- → 15.00 Welcome and introduction to Cantargia Göran Forsberg, CEO
- → 15.05 Nadunolimab (CAN04) Mechanism of action David Liberg, VP Research
- → 15.25 Nadunolimab updated phase IIa clinical results in pancreatic cancer Prof Ahmad Awada, Inst. Jules Bordet, Brussels, Belgium
- → 15.50 Pancreatic cancer and context for nadunolimab results Dr Manuel Hidalgo, Weill-Cornell, New York
- → 16.10 Nadunolimab current and upcoming clinical trials, Ignacio Garcia-Ribas, CMO
- → 16.25 CAN10 project and new preclinical results— David Liberg, VP Research
- → 16.45 Q&A
- → 17.00 End of presentation

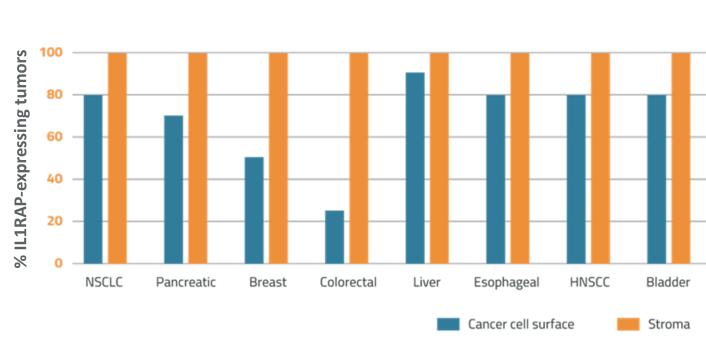



Targeting IL1RAP in cancer

- IL1RAP is an inflammatory protein expressed by tumor cells and by tumorsupporting cells in the tumor vicinity
- IL1RAP is involved in chronic tumor inflammation and promotes tumor growth and immune suppression both on tumor cells and on tumor-supporting cells
- IL1RAP is involved in tumor cell survival and resistance to therapeutic interventions

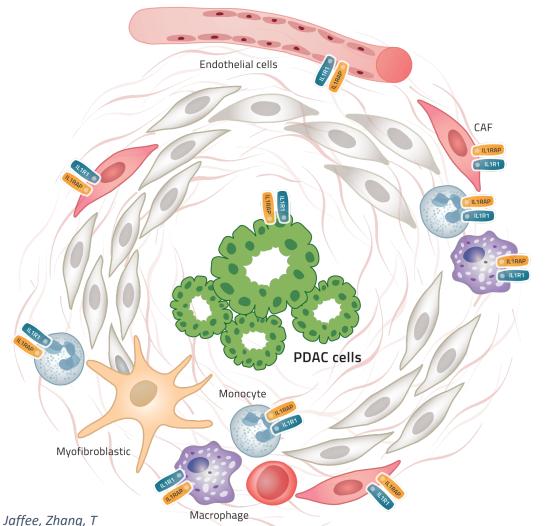
Nadunolimab (CANO4) — an anti-IL1RAP antibody with dual functions





- 1. CANO4 blocks signalling (stops tumour progression and inflammation)
- CANO4 stimulates the immune defence (e.g. natural killer cells) to eradicate tumour cells

IL1RAP expression in solid tumors


IL1RAP

NSCLC biopsy CANFOUR, IL1RAP staining

IL1RAP is expressed broadly in solid tumors, both on cancer cells and stromal cells

IL1RAP expression in solid tumors

IL1RAP is expressed by:

- tumor cells
- cells in the tumor microenvironment:
 - cancer-associated fibroblasts (CAF)
 - tumor-associated macrophages (TAM)
 - o monocytes
 - neutrophils
 - endothelial cells

IL1RAP-expressing cells react to IL1 α or IL1 β in the tumor microenvironment

@antargia

IL- $1\alpha/\beta$ and resistance to therapy

Interleukin-1 blockade overcomes erlotinib resistance in head and neck squamous cell carcinoma

Aditya Stanam^{1,2}, Katherine N. Gibson-Corley^{2,5,6}, Laurie Love-Homan², Nnamdi Iheiirika³, Andrean L. Simons^{1,2,4,5,6}

[CANCER RESEARCH 62, 910-916, February 1, 2002]

Autocrine Production of Interleukin 1B Confers Constitutive Nuclear Factor &B

Activity and Chemoresistance i A Novel Role for the Interleukin-1 Receptor Axis in Resistance to Anti-EGFR Therapy

Alexander Arlt, Jens Vorndamm, Susanne Heiner Schäfer³

IRAK1 is a therapeutic target that drives preast

cancer Neutrophil-Derived IL-1β Impairs the Efficacy

Zhen Ning Wee of NF-kB Inhibitors against Lung Cancer Puay Leng Lee¹

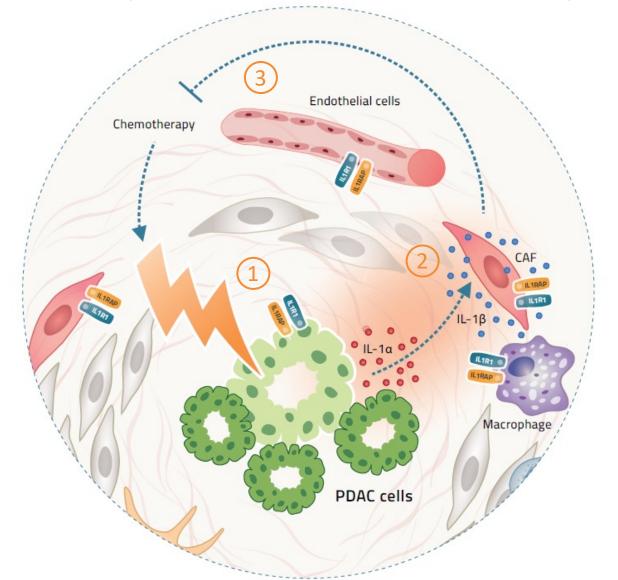
Dave S.B. Hoon Allvson G. McLoed, Taylor P. Sherrill, Dong-Sheng Cheng, Wei Han, Jamie A. Saxon, Linda A. Gleaves, 2 Pingsheng Wu,³ Vasiliy V. Polosukhin,² Michael Karin,⁴ Fiona E. Yull,^{1,5} Georgios T. Stathopoulos,^{2,6,7} Constitutive Vassilis Georgoulias, 8 Rinat Zaynagetdinov, 2,11,* and Timothy S. Blackwell 1,2,5,9,10,11

Prognosis and Chemoresistance in Pancreatic Ductal Adenocarcinoma M

Daoxiang Zhang¹, Lin Li¹, Hongmei Jiang¹, Brett L. Knolhoff¹, Albert C. Lockhart¹, Andrea Wang-Gillam¹, David G. DeNardo¹, Marianna B. Ruzinova², and Kian-Huat Lim¹ Serum levels of IL-6 and IL-1 β can predict the efficacy of gemcitabine in patients with advanced pancreatic cancer

S Mitsunaga*,1,2, M Ikeda¹, S Shimizu¹, I Ohno¹, J Furuse³, M Inagaki⁴, S Higashi⁵, H Kato⁵, K Terao⁶ and A Ochiai²

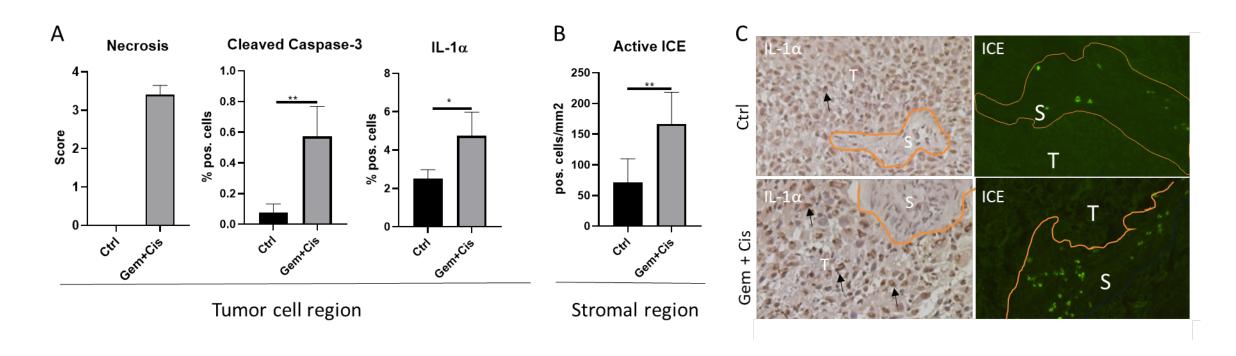
 ${\it Valerio~Gelfo~^{1,2,\dagger}}{\tiny \texttt{10},~Martina~Mazzeschi~^{1,\dagger},~Giada~Grilli~^{1},~Moshit~Lindze}}\ Chemotherapy-triggered~cathepsin~B~release~in~^{1,2,\dagger}{\tiny \texttt{10},~Martina~Mazzeschi~^{1,2,\dagger},~Giada~Grilli~^{1,2$ Gabriele D'Uva 60, Balázs Győrffy 7,8, Andrea Ardizzoni 1, Yosef Yarden myeloid-derived suppressor cells activates the Nlrp3


> Mélanie Bruchard^{1,2,8}, Grégoire Mignot^{1,2,8}, Valentin Derangère^{1,2}, Fanny Chalmin^{1,2}, Angélique Chevriaux¹⁻³, an^{1,2}, Wilfrid Boireau⁴, Benoit Simon⁴, Bernhard Ryffel⁵, Jean Louis Connat⁶, los⁷, François Martin^{1,2}, Cédric Rébé¹⁻³, Lionel Apetoh^{1-3,8} & François Ghiringhelli^{1-3,8}

ory cytokines defines resistance of inhibitors

, Maria Teresa Rodia^{1,*}, Michela Pucci¹, Massimiliano Dall'Ora¹, ^{1,4}, Rossella Solmi¹, Lee Roth⁵, Moshit Lindzen⁵, Massimiliano a Bertotti⁶, Elisabetta Caramelli¹, Pier-Luigi Lollini¹, Livio Trusolino⁶, 3abriele D'Uva^{7,**}, Mattia Lauriola^{1,2,**}

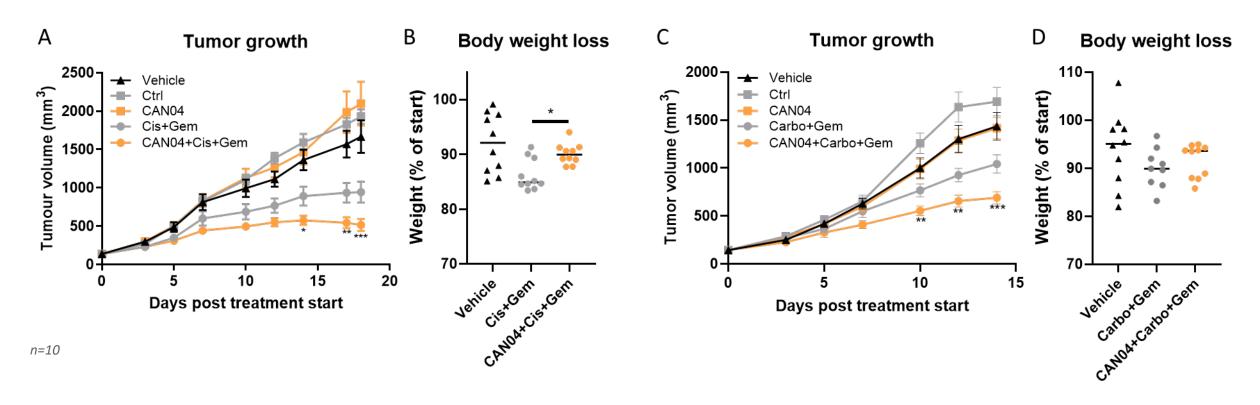
The IL-1 system is induced by chemotherapy



- 1. Chemotherapy induces cell killing and IL1 α upregulation in tumor cells
- 2. IL1 β is induced in the tumor stroma
- 3. $IL1\alpha$ and $IL1\beta$ mediates chemoresistance

The IL-1 system is induced by chemotherapy

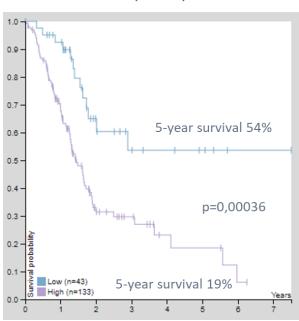
Immunohistochemistry of tumor tissue in a NSCLC patient-derived xenograft model

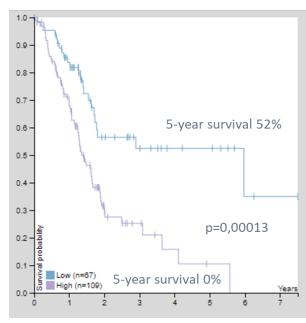


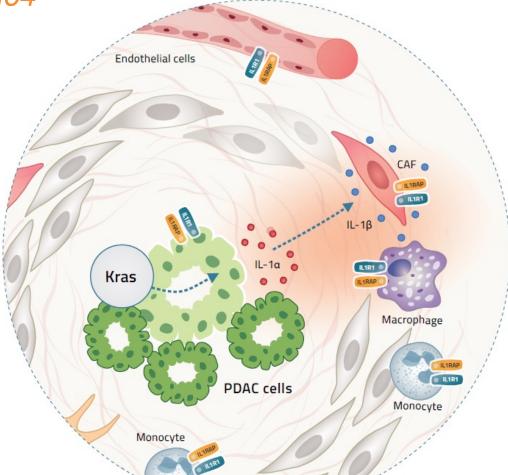
IL-1 α is upregulated in tumor cells after chemotherapy and Interleukin 1 β -converting enzyme (ICE/Caspase-1) in the tumor stroma

CANO4 increases the efficacy of chemotherapy

Tumor growth in a NSCLC patient-derived xenograft model


CANO4 increases efficacy of chemotherapy regimens and counteracts weight loss

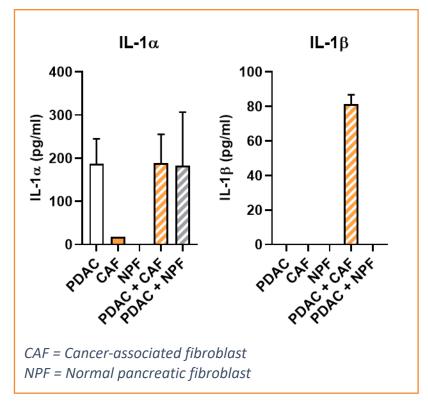

Pancreatic cancer

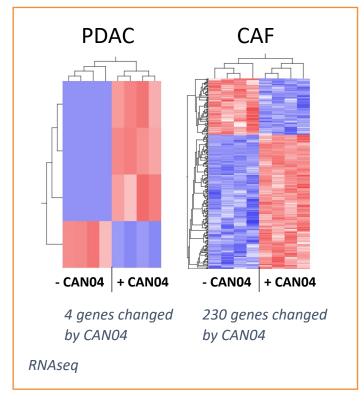

KRAS-driven inflammation and the potential of CANO4

KRAS mRNA (TCGA) vs survival

IL1RAP mRNA (TCGA) vs survival

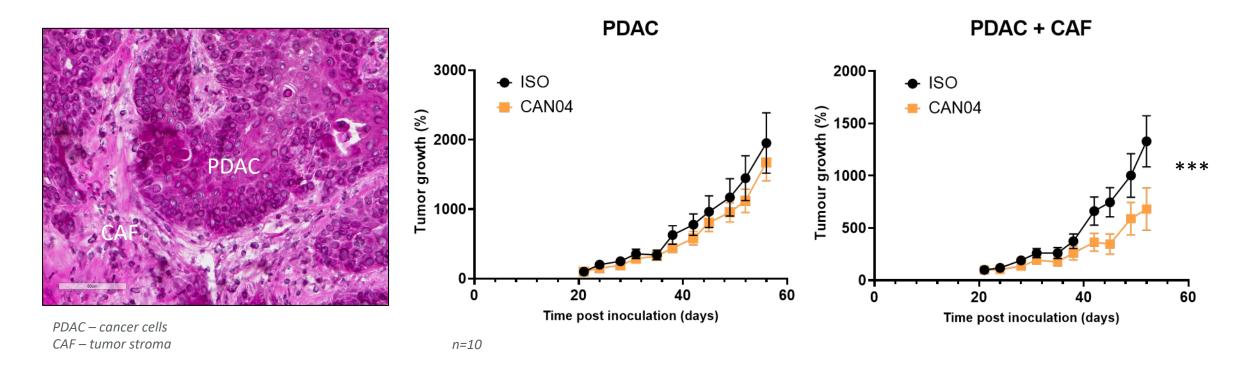

https://www.proteinatlas.org/


- > 90% of PDAC tumors have mutated KRAS
- IL1 α induced by KRAS has been shown to be important for tumor development in PDAC



The pancreatic tumor microenvironment in vitro

Human pancreatic cancer cells cultured with human cancer associated fibroblasts



- Cross-talk between cancer cells and stromal cells involve $IL1\alpha/\beta$
- CAN04 treatment has a major impact on tumor cell-induced reprogramming of cancer-associated fibroblasts

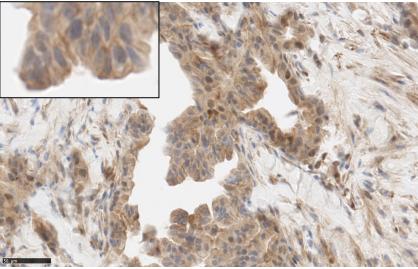
Inhibition of pancreatic tumor growth by CAN04

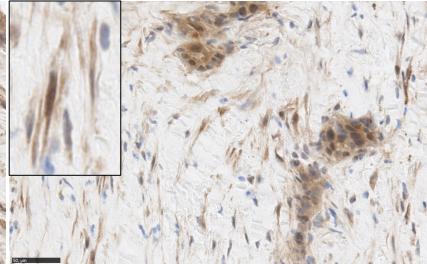
Tumor growth in a CAF-PDAC xenograft model of human pancreatic cancer

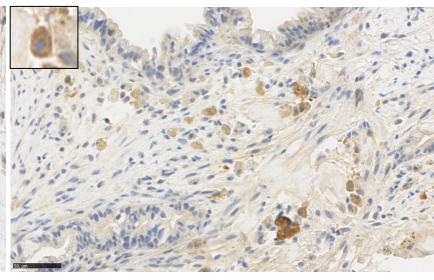
The inhibition of tumor cell growth induced by CAN04 is mediated by cancer-associated fibroblasts (CAFs)

Summary

- CAN04 (nadunolimab) blocks IL1 α /IL1 β signaling and induces antibody-mediated cell killing of IL1RAP-expressing cells
- IL1RAP is broadly expressed in solid tumors, both on tumor cells and in tumor stroma
- CAN04 targets both tumor cells and components of the tumor stroma
- Chemotherapy activates the $IL1\alpha/\beta$ -system in the tumor microenvironment
- CAN04 and chemotherapy act in synergy to inhibit tumor growth


Effects on tumor microenvironment and chemoresistance makes CANO4 an intriguing and unique compound for treatment of cancer, including pancreatic cancer


CANFOUR - Pancreatic ductal adenocarcinoma


Tumor cells

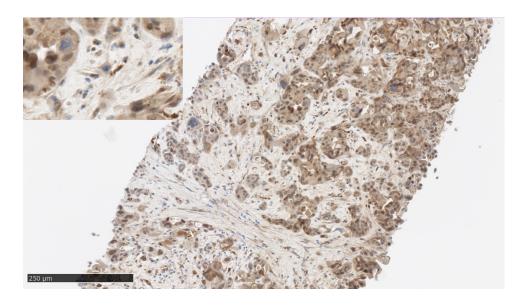
Cancer-associated Fibroblasts (CAFs)

Tumor-associated Macrophages (TAMs)

CANFOUR pancreatic biopsy

CANFOUR pancreatic biopsy

CANFOUR liver biopsy


- IL1RAP is expressed in tumor and stromal cells in primary and metastatic tumors from PDAC patients
- Analyses of plasma and tumor samples ongoing, to be presented at a scientific conference

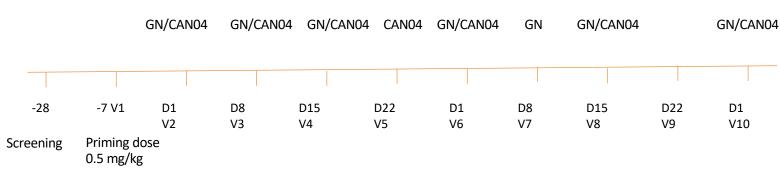
IL1RAP relevance in pancreatic cancer

- Pancreas cancer still an unmet medical need.
- One of the few indications where immunotherapy does not have a role.
- IL1RAP, overexpressed on pancreatic cancer cells and associated stroma
- IL1RAP and IL-1 system has documented roles in pancreatic cancer tumor microenvironment
- IL1RAP blockade synergizes with chemotherapy regimes used to pancreas cancer.

CANFOUR PDAC patient biopsy showing IL1RAP expression on tumor cells and stroma

The first nadunolimab clinical trial CANFOUR

Started 2017 with the aim to identify a safe dose, evaluate biomarkers and find early efficacy signals of:


- Nadunolimab monotherapy (N=48)
- Nadunolimab in combination with gemcitabine/cisplatin in NSCLC (plan N=31)
- Nadunolimab in combination with gemcitabine/nab-paclitaxel as first line treatment of PDAC (N=36)

CANFOUR trial is currently ongoing.

Nadunolimab with gemcitabine/nab-paclitaxel (GN) in PDAC

- Patient population: Stage III/IV PDAC in first line of systemic chemotherapy
- Patient Disposition:
 - 36 PDAC patients were treated in 10 sites in 5 EU countries from March 2019 up to October 2020.
 - 8 patients were treated initially at 7.5 mg/kg/week and 28 at 5 mg/kg/week. CAN04 at 5mg/kg was considered the maximum tolerated dose.
 - Infusion related reaction risk with 1^{st} infusion was managed with a priming dose of 0.5 mg/kg and premedication.
 - Modified intention to treat (mITT) population(efficacy population): 33 patients.
 Three patients withdrew consent/discontinued due to IRR with priming dose and never received chemotherapy.

Baseline patient characteristics vs. MPACT trial

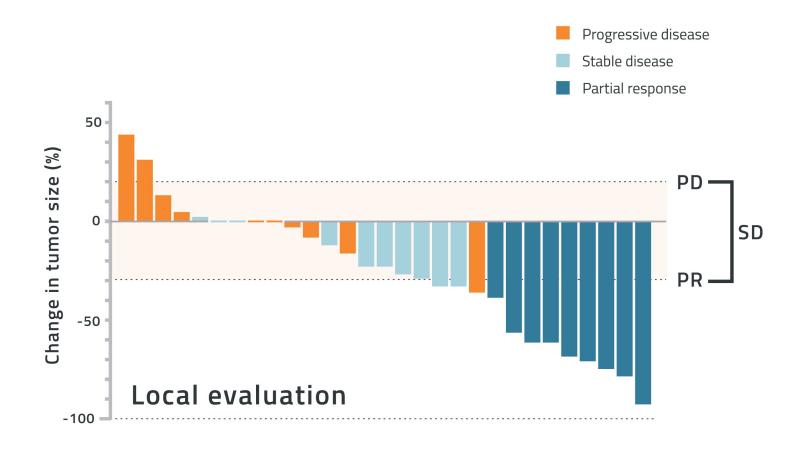
		CANFOUR	MPACT*
		36	431
Age	Median	62	62
	Range	46-87	27-86
	<65 yr	64%	59%
	>=65 yr	36%	41%
Sex	Female	53%	43%
	Male	47%	57%
PS	0	64%	58%
	1	36%	42%
Site of metastases	Liver	74%	85%
	Lung	34%	35%
	Lymph nodes	40%	ND
	Peritoneum	28%	4%
CA19-9	N	33	379
	Median	4483	2294
	Range	1-47 929	1.9-6 159 233
Previous treatment	RT	8%	4%
	Chemotherapy	15%	5%
	Surgery	36%	7%
	Biliary stent	13%	19%

^{*}MPACT is the randomized gemcitabine/nab paclitaxel historical control data (von Hoff et al, 2013). Data presented only for the gemcitabine/nab-paclitaxel arm

CANFOUR population seems to be similar to MPACT

PDAC efficacy evaluation and summary

Efficacy evaluation:

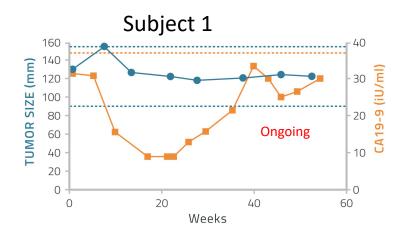

- CT scan every 2nd month
- Serum CA19-9

Efficacy evaluation summary:

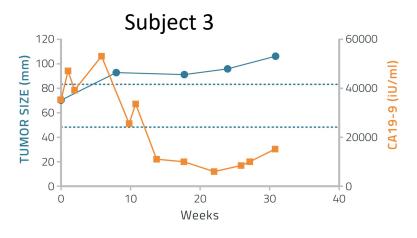
- Durable responses observed
- Promising PFS and OS
- Important finding of pseudoprogression-like response in 5 (15%) patients predicting long PFS.

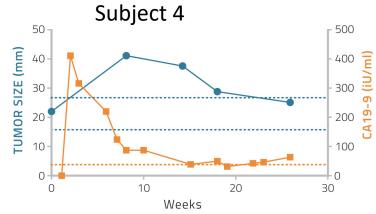
Evaluation of tumor shrinkage by the investigator

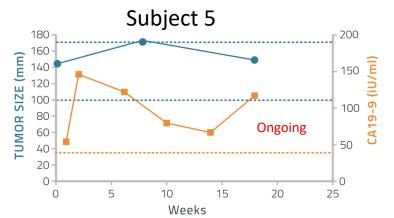
- Waterfall plot is based on largest percentage tumor shrinkage (target lesions) and best overall response during study
- PD is >20% increase vs baseline and PR is >30% tumor shrinkage.
- Central review ongoing
 - 1CR
 - 7PR (incl 1 unconfirmed CR)
 - 3PR awaiting confirmatory scan

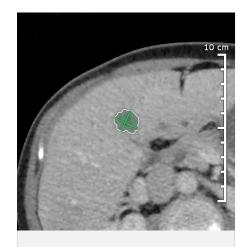

Pseudoprogression (PsP) in PDAC

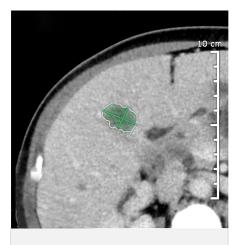
- Evidence of tumor growth (including the appearance of new lesions) not corresponding with treatment failure but with long-term benefit.
- In solid tumors, PsP is observed with checkpoint inhibitors. The apparent increase in tumor burden may precede antitumor effects, resulting from immune cells infiltrating the tumor.
 - Specific response criteria have been developed to account for treatment benefit beyond progression (iRECIST)
 - CAN04 can activate the immune system against the tumor. For this reason, iRECIST is used to measure response and progression free survival.
- To our knowledge, PsP is not previously described for PDAC with chemotherapy or immunotherapy.

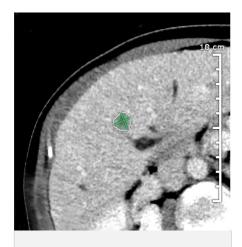



Patients with Pseudoprogression-like response

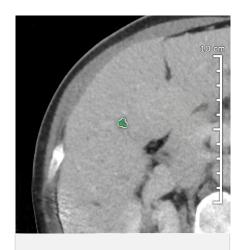

- All presented PD at 1st CT scan evaluation (8 weeks)
- All showed concomitant reduction of CA19-9

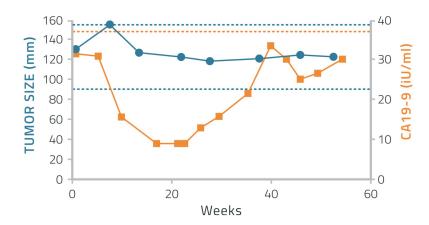




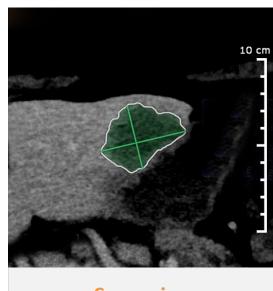

Liver metastases evolution subject 1

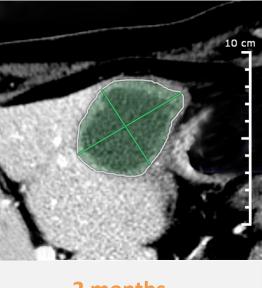

ScreeningTarget lesions

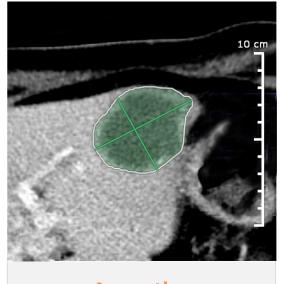

2 months +32% (PD/iUPD)

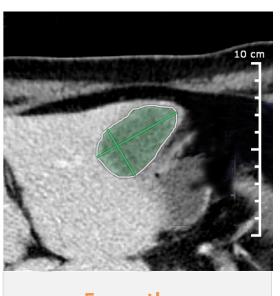

3 months -35% (iPR)

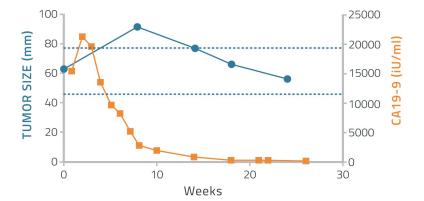
7 months -56% (iPR)


12 months -62% (iPR)


PD= progressive disease iUPD= unconfirmed progressive disease by iRECIST iPR= immune partial response by iRECIST


Liver metastases evolution subject 2


ScreeningTarget lesions


2 months +25% (PD/iUPD)

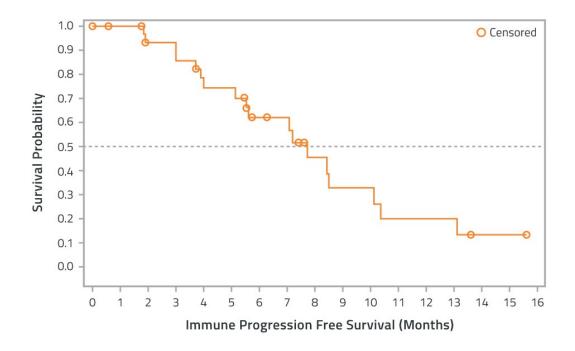
4 months +14% (iSD)

5 months 0% (iSD)

PD= progressive disease iUPD= unconfirmed progressive disease by iRECIST iSD= immune stable disease by iRECIST

PDAC response parameters and benchmark

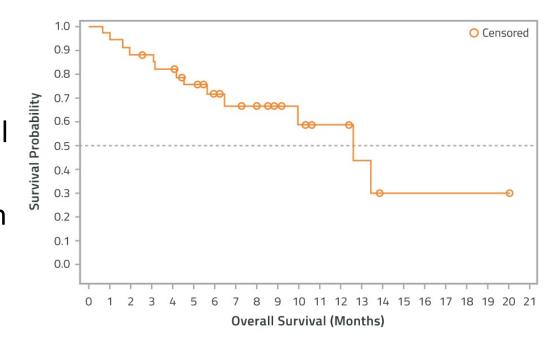
Response parameter	CANFOUR (N=33)	Reference (von Hoff; Fernández)
ORR per investigator	27 % (9 PR)	29% (95%CI: 25-34)
Pseudoprogression iRECIST	15%	0%
Disease control rate (PR+SD+ iRECIST iUPD/iSD)	72%	48% (95% CI: 43-53)
Median duration of response	6.8 months (range 1.9 to 13.8)	3.5 months


Note 7/33 pts still being treated at cutoff date (20 April 2021)

[•] von Hoff et al, 2013; Fernández et al, 2018. Data from gemcitabine/nab-paclitaxel arm only

Progression Free Survival by iRECIST

- Median iPFS is 7.8 months (95% CI 5.2 to 10.2) with 55% of events. iPFS range 0 to 15.6 months
 - iPFS rate at 6 months: 62%; at 1 year: 19%
 - Seven patients at cut-off are still receiving treatment.


The observed iPFS is longer than expected from chemotherapy alone

32

Overall Survival

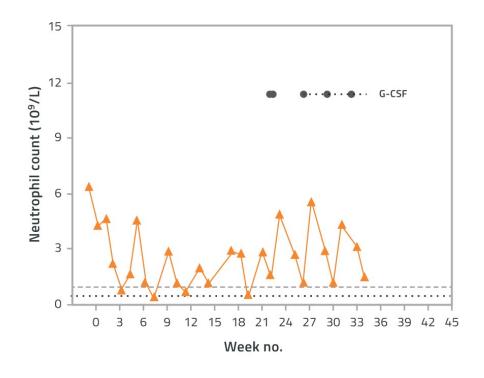
- Median OS is 12.6 months (95% CI not estimable) with 42% of OS events.
- 6-month survival rate: 71%, 1-year survival rate: 55%
- Data needs further maturation before firm conclusions

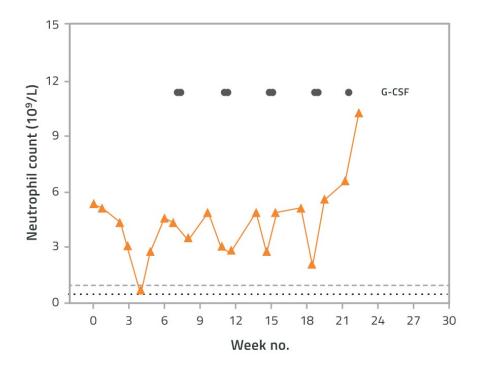
PDAC efficacy parameters and benchmark

Efficacy parameter	CANFOUR (N=33)	MPACT trial* (N=431)
Median iPFS (iRECIST)/PFS (RECIST1.1)	Median iPFS 7.8 mo [95%CI: 5.2-10.2] iPFS at 6 months: 62%	Median PFS: 5.5 mo (95% CI: 4.5-5.9) PFS at 6 months: 44%
Mean duration of treatment	4.8 months	3.9 months
Overall survival (OS)	Median OS 12.6 mo [95% CI not estimable] 1-year survival 55%.	Median OS 8.5 mo [95%CI: 7.9 to 9.5) 1-year survival 35%.

Note 7/33 pts still being treated at cutoff date (20 April 2021)

von Hoff et al, 2013; Data from gemcitabine/nab-paclitaxel arm only


Nadunolimab/GN in PDAC safety summary


- •Only infusion related reaction (IRR) and neutropenia are considered nadunolimab safety findings.
- Both reflect pharmacodynamic effects of nadunolimab.
- Infusion Related Reactions:
 - •IRR in 16/36 (44%) of the patients. Mild in 38% and moderate in 56% of these. Only 1 patient had a severe (Grade 3) reaction.
 - Managed with premedication and a prolonged 1st infusion.
- •Neutropenia and febrile neutropenia:
 - •Grade 3/4 neutropenia in 67% of the patients and Grade 3 febrile neutropenia in 17%
 - •It can be prevented and managed with G-CSF and dose reductions.

G-CSF is effective for neutropenia prevention

- There is greater than expected frequency of neutropenia and febrile neutropenia with the addition of CANO4
- G-CSF accelerates recovery and seems to be effective at preventing future episodes.

CAN04/GN in PDAC safety summary and benchmark

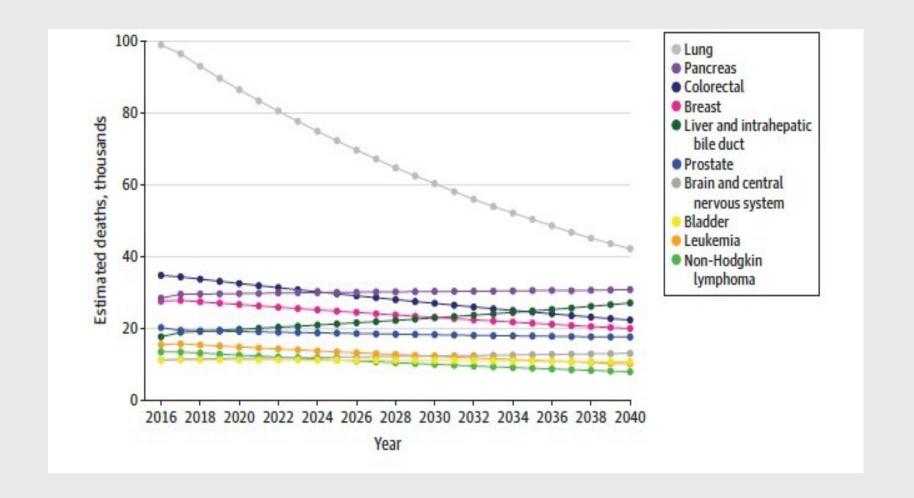
Grade 3 or higher AEs	Gem/Abraxane (von Hoff) N=421	CANFOUR CAN04/GN N=36	FOLFIRINOX (Conroy 2011) N=171
Neutropenia	38%	67%	46%
Febrile neutropenia	3%	17%	5%
Thrombocytopenia	13%	19%	9%
Anemia	13%	14%	8%
Fatigue	17%	6%	24%
Peripheral neuropathy	17%	0%	9%
Diarrhea	6%	3%	13%
Elevated ALT	ND	3%	7%
IRR	ND	3%	ND

The beneficial effect in fatigue and chemotherapy-induced neuropathy² (nabpaclitaxel or oxaliplatin) can be mediated by IL-1 blockade.

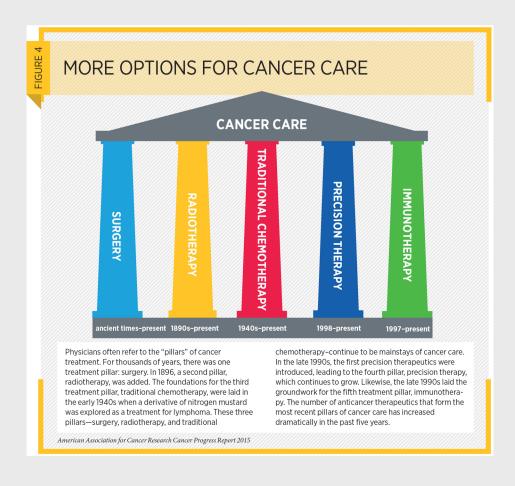
¹ Al-Mazidi et al. Eur J Pain, 2018

Conclusions

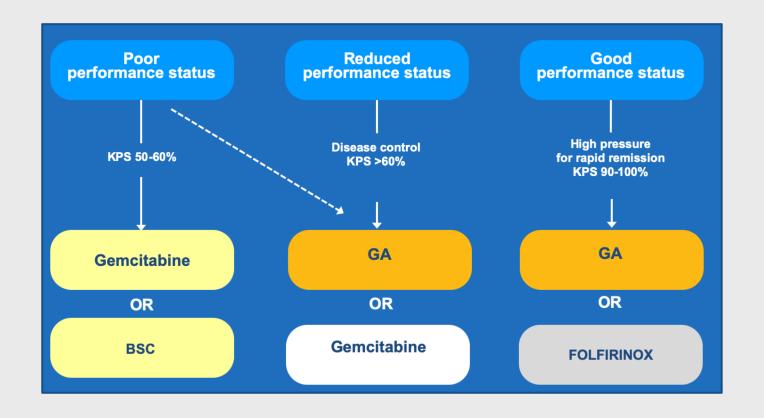
- Adding nadunolimab to gemcitabine/nab-paclitaxel in first line treatment of metastatic PDAC:
 - Promising efficacy:
 - Long duration of response
 - Identification of a pseudoprogression-like phenomena that predicts longer treatment benefit
 - Emerging PFS and OS seems to be better than historical controls
- Manageable safety:
 - Neutropenia can be managed with G-CSF and GN dose modifications
 - Mild/moderate infusion related reactions during first infusion that are manageable same as other commercialized drugs.
 - Notably decreased levels of fatigue and nab-paclitaxel neuropathy
- Combination should be advanced towards randomized trial to verify effects.

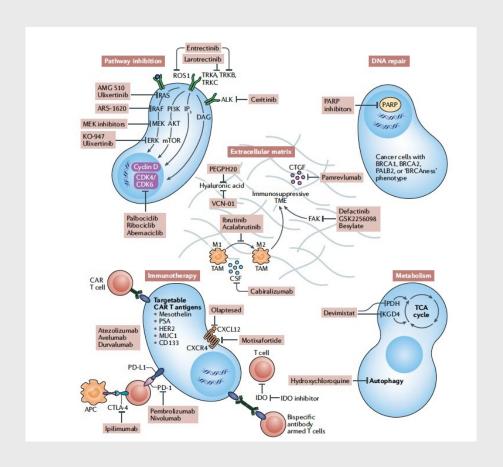

Therapeutic Opportunities in Pancreatic Cancer

Manuel Hidalgo, M.D., Ph.D.


COI Disclosure

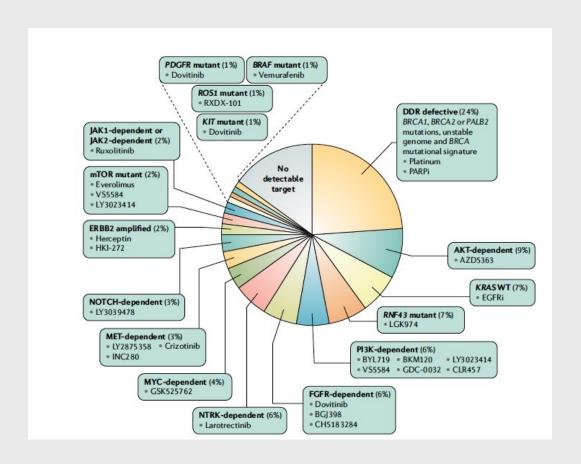
- Board of Directors
 - o BMS
- Founder:
 - Champions Oncology, Nelum Pharmaceuticals
- Stock holder:
 - Champions Oncology, Agenus, Nelum Pharmaceuticals, Highlight Pharmaceuticals, Oncomatrix, Inxmed, Pharmacyte, BMS.
- Research support:
 - o Erytech, PanCan, TBA alliance
- Honorarium:
 - Agenus, Oncomatrix, Inxmed, Khar, Genechem, Cantargia, BMS
- Royalties:
 - Myriad, Kahr


The Problem


Pillars of Cancer Treatment

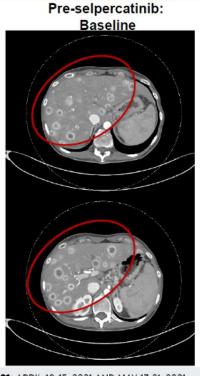
Stage IV Management Algorithm

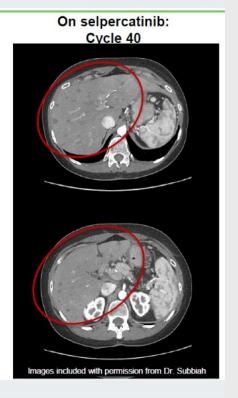
Selected Agents in Development



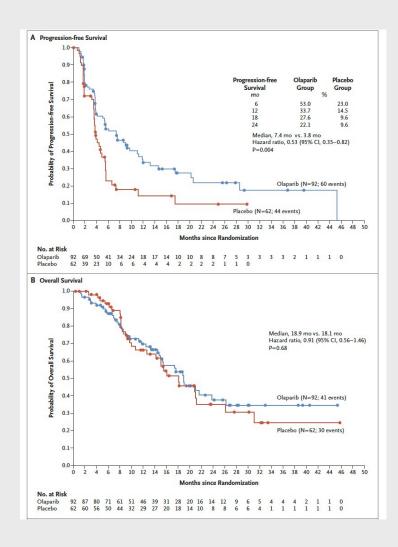
PDAC Genetics

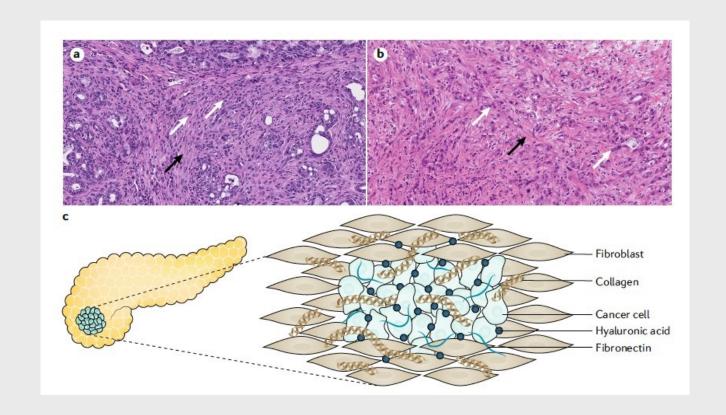
Putative Targets and Inhibitors




Example of Precision Medicine

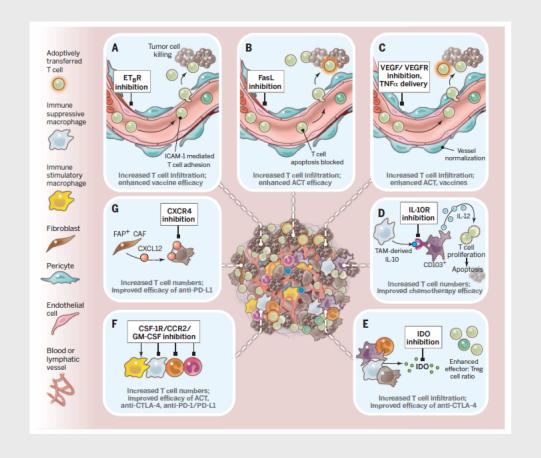
Case Study: 31-year-old Woman with Pancreatic Cancer


- Pancreatic metastatic ductal adenocarcinoma:
 - PRKAR1A-RET fusion
 - Microsatellite stable
 - KRAS/BRAF wildtype
- Prior therapy:
 - FOLFIRINOX/FOLFIRI, 6 months
 - Discontinued due to PD
- Selpercatinib started:
 - Partial response (-51%)
 - Manageable low-grade AEs
 - Response ongoing at 37 months

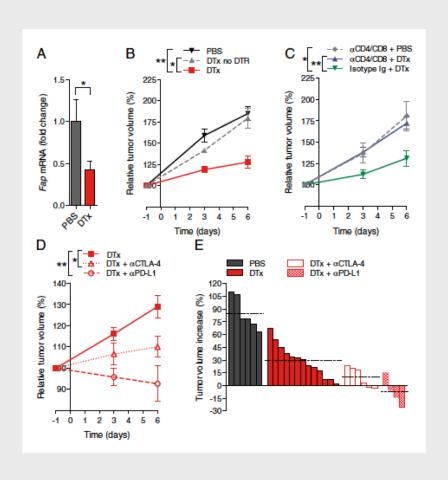


AACR ANNUAL MEETING 2021: APRIL 10-15, 2021 AND MAY 17-21, 2021

Olaparib in BRCA mut PDAC

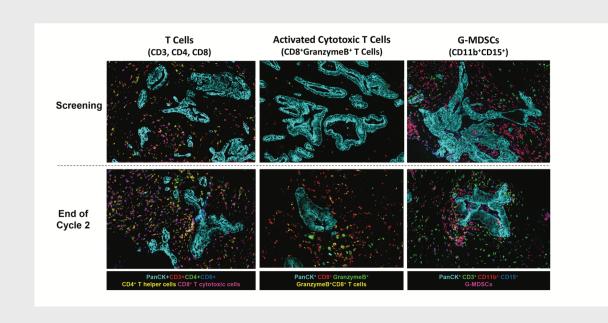


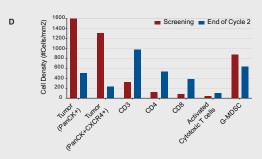
PDAC TME



Hosein et al, Nat Rev Gastroenterology and Hepatology 2020

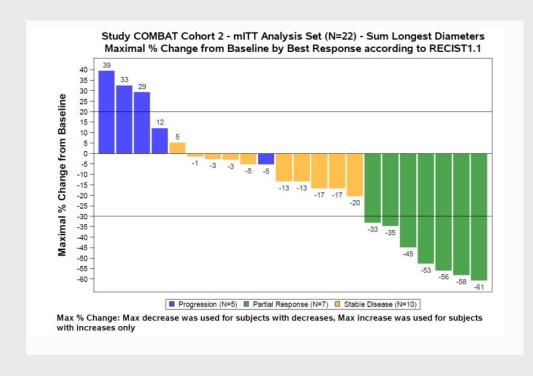
IO in PDAC


Depletion of FAP+ Cells and Immune Response



Joyce at al, Science 2015

Effects on T cell Infiltrate in Tumor Tissues

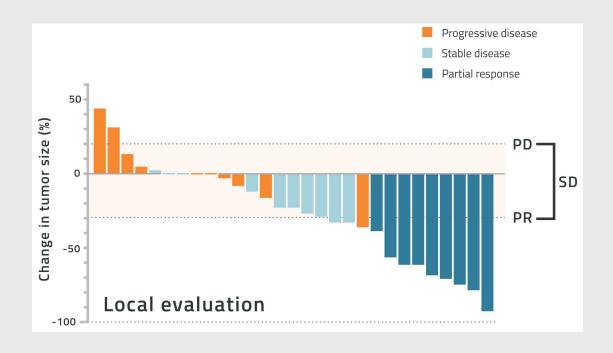


Bockorny et et al, Nat Med 2020


Responses Water Fall Plot

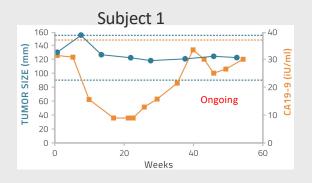
	N	%
Evaluable patients	22	100%
ORR	7	32%
DCR (PR + SD)	17	77%
PR	7	32%
SD	10	45%

Bockorny et et al, Nat Med 2020

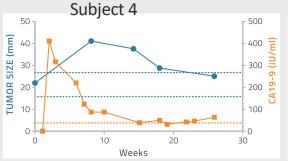

Tumor cell-derive IL1 in PDAC

Das et et al, Can Res 2021

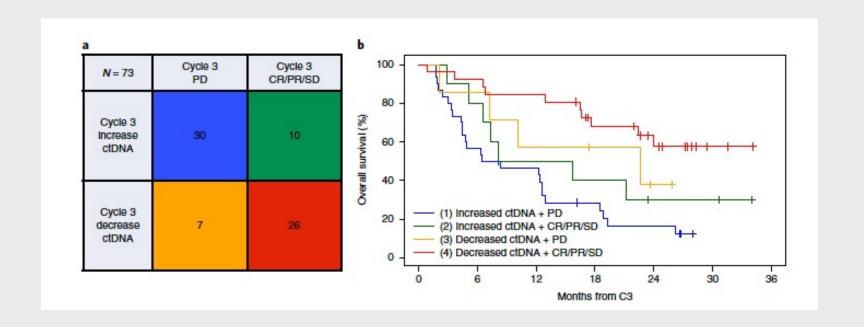
Evaluation of tumor shrinkage by the investigator

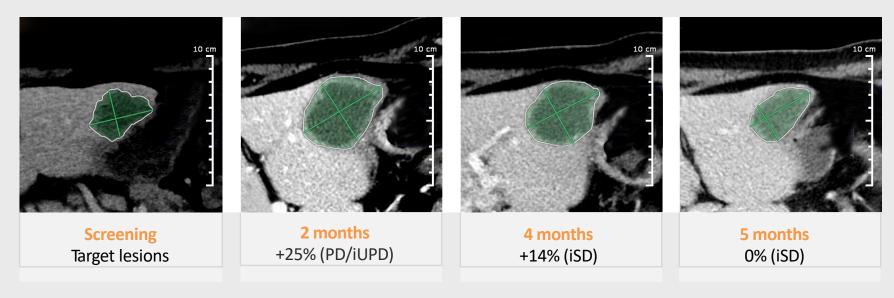


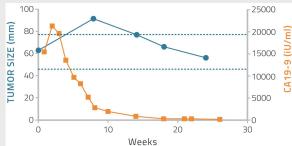
- Waterfall plot is based on largest percentage tumor shrinkage (target lesions) and best overall response during study
- PD is >20% increase vs baseline and PR is >30% tumor shrinkage.
- Central review ongoing
 - 1CR
 - 7PR (incl 1 unconfirmed CR)
 - 3PR awaiting confirmatory scan


Patients with Pseudoprogression-like response

- All presented PD at 1st CT scan evaluation (8 weeks)
- All showed concomitant reduction of CA19-9






Monitoring Pseudoprogression

Bratman et et al, Can Res 2021

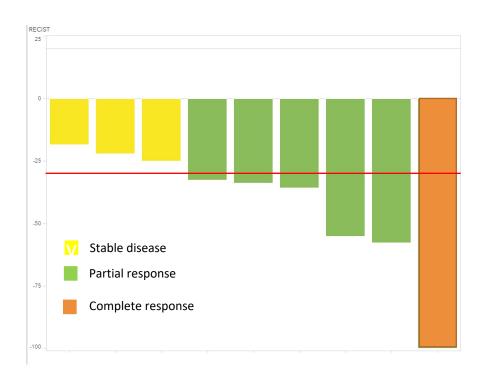
Liver metastases evolution subject 2

PD= progressive disease iUPD= unconfirmed progressive disease by iRECIST iSD= immune stable disease by iRECIST <a>Weill Cornell Medicine

NewYork-Presbyterian

Nadunolimab PDAC highlights

- Nadunolimab appears to increase the efficacy of gemcitabine and nab-paclitaxel (Abraxane®) in patients with metastatic PDAC.
- Several patients benefit with durable responses or pseudoprogression (benefit after initial disease progression). These patient populations contribute to a positive impact in progression free survival that may be translated in improved survival.
- This is the first time pseudoprogression has been described in PDAC and it is a distinctive feature of nadunolimab.
- The new clinical results fit well with a chemosensitization mechanism as observed in animal models.
- On the safety side, infusion related reactions and neutropenia are the identified toxicities of CAN04 with chemotherapy. Neutropenia can be effectively prevented with G-CSF and dose modifications.
- Nadunolimab may be beneficial in preventing/delaying nab-paclitaxel neuropathy and cancerrelated fatigue.

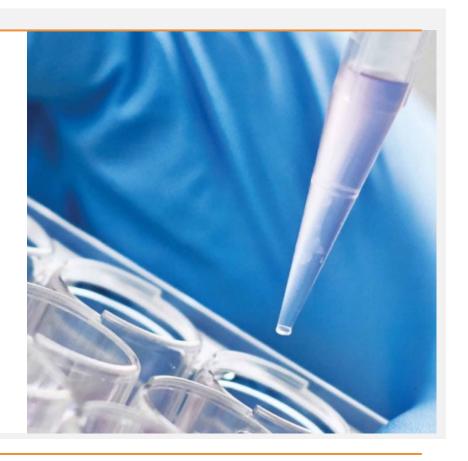


Nadunolimab clinical development status

Study	Indication	CAN04 combination	Status	Planned milestone(s)
CANFOUR	NSCLC	Gemcitabine/cisplatin	Recruitment ongoing,	Results planned for Q3 2021
CANFOUR	PDAC	Gemcitabine/nab- paclitaxel	Extension phase ongoing. (Dosing schedule, lower doses, G-CSF)	Main study results presented 20 May LPI extension phase expected Q3 2021
CIRIFOUR	NSCLC, HNSCC, melanoma, bladder cancer	Pembrolizumab	Recruitment ongoing	LPI Q3 2021 Results H2 2021
-	PDAC	mFOLFIRINOX	Regulatory review ongoing	FPI Q2 2021
-	Triple negative breast cancer	Gemcitabine/carboplatin	Preparation together with GEICAM.	Submission Q2
-	Colorectal cancer	mFOLFOX	Preparation	Submission Q2
-	Biliary tract cancer	Gemcitabine/cisplatin	Preparation	Submission Q2
-	NSCLC	Docetaxel	Preparation	Submission Q2

CANFOUR: Tumor shrinkage – NSCLC combination

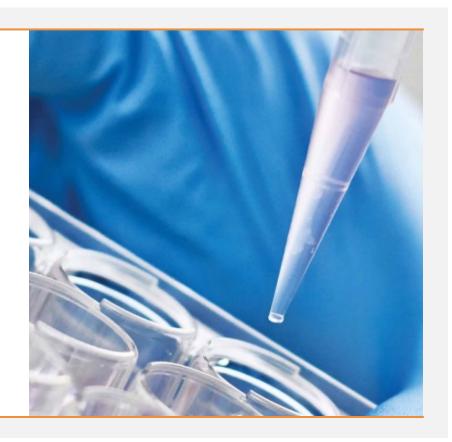
CAN04/GC. Maximal target lesion reduction versus baseline


- → CAN04 in combination with gem/cis in 1st line chemotherapy
- → Press release September 2020: 6 of 9 evaluable patients with metastatic non-small cell lung cancer (NSCLC) showed objective response including 1 complete response (67% vs historical control data 22–28%)
- → The complete response has lasted more than 1 year
- → 5 patients were second line to pembrolizumab monotherapy, 4 patients first line
- → No major side effects observed except those from chemotherapy or CAN04 alone. Neutropenia frequency higher than expected from chemo (treated with dose reductions/GCSF

POSITIVE INTERIM DATA, RECRUITMENT CONTINUE FOR PRIMARY ANALYSIS BROADENING OF NSCLC DEVELOPMENT INTO ADDITIONAL MARKET SEGMENTS

CIRIFOUR: US Phase I clinical trial

- → First patient started 2020. Enrollment according to plan, results expected H2.
- → Combination with checkpoint inhibitor in patients no longer responding to PD1/PDL-1 therapy.
 - Investigating the safety of the combination
 - Exploring CAN04 as immune-oncology drug
 - Building block for the development of platinum doublet/pembro/CAN04
- → Primary endpoint safety, secondary endpoints include biomarkers and efficacy
- → Indications include NSCLC, HNSCC, malignant melanoma and bladder cancer (up to 18 patients).
- → Strong US centres, Coord investigator Prof Roger Cohen, UPenn
- https://clinicaltrials.gov/ct2/show/NCT04452214



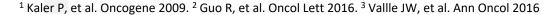
Nadunolimab clinical trials to be started

→ First line combination with modified FOLFIRINOX in pancreatic cancer

- Up to 30 patients, initial dose escalation followed by dose expansion
- Approximately 9 centres in France and Spain
- First patient planned June 2021
- → "Basket trial" in new indications and combinations
- Including NSCLC (docetaxel), CRC (mFOLFOX) and biliary tract cancer (gemcitabine/cisplatin)
- Protocol submission planned Q2 2021
- Performed in Europe
- CAN04 in triple negative breast cancer
- In combination with gemcitabine/carboplatin
- In collaboration with the Spanish Breast Cancer Group (GEICAM)

Rationale for the novel indications/combinations (1)

Colorectal cancer:


- → 3rd most common tumor, incidence 150.000 per year USA.
- → Oxaliplatin is a cornerstone in CRC. Immunotherapy doesn't work in 90% of CRC.
- → Potential clinical synergy of CAN04 with oxaliplatin
- \rightarrow IL-1 β is required for macrophages to promote growth and support survival of colon cancer cells¹. Thus, CANO4, may reduce tumor inflammation and tumor progression

Biliary tract cancer (BTC)

- → Less common cancer, incidence 12.000 per year USA
- → Standard first line is gemcitabine and cisplatin: right spot for assessing CAN04³
- → CPIs do not work. Recently isocitrate dehydrogenase (IDH) inhibitor has been approved for IDH-mutant intrahepatic cholangiocarcinoma (10% BTC)
- \rightarrow Several exploratory studies report a promoting role of exogenous IL-1 β on the proliferation and migration of gallbladder cancer cell lines and the importance of IL1 pathway²

• or itardia

Rationale for the novel indications/combinations (2)

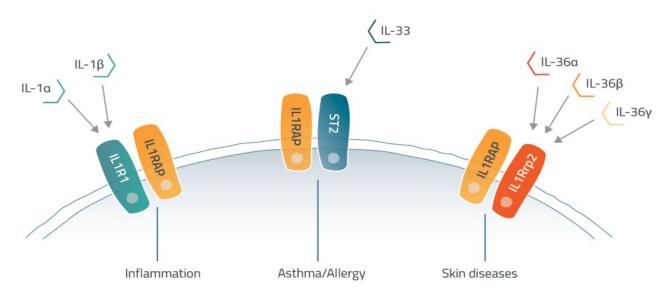
NSCLC

- → Docetaxel standard therapy in late stage patients
- Based on CANFOUR results and chemosensitization hypothesis, an interesting opportunity for CAN04
- → IL-1 system has a well described role in NSCLC development

Triple negative breast cancer (TNBC)

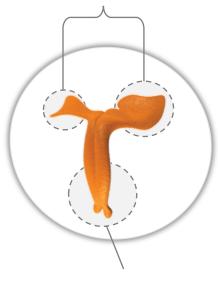
- → Breast cancer incidence 284.000 per year USA. TNBC is approximately 15% of cases.
- → Affects younger women, more aggressive. Associated with BRCA mutations.
- → It is the BC subtype in which IL1RAP has the highest level of expression
- → Platinums and polychemotherapy is widely accepted for metastatic disease.
- → Excellent opportunity for exploring CAN04 synergy with platinums

CAN10 – indications and preclinical development



- → Inflammation of muscular tissues of the heart that can lead to fibrosis and loss of contractile function
- → Characterized by initial acute inflammation that can progress to fibrosis and loss of contractile function
- → The estimated incidence of myocarditis is approximately 22 per 100,000 and the disease accounts for approximately 0.6 per 100,000 deaths annually worldwide

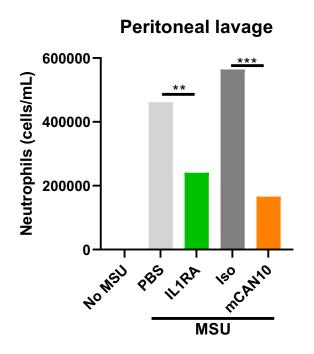
- → Chronic, autoimmune connective tissue disorder characterized by inflammation and fibrosis of the skin and internal organs
- → The leading cause of death interstitial lung disease where the unmet need is particularly high
- → The estimated annual incidence is about 4.5 per 100,000 in North America and 1.8 per 100,000 in Europe

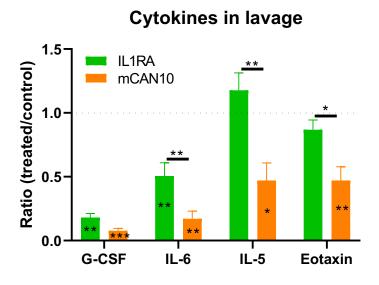


CAN10 – rationale

Opportunity: target all IL1RAP-dependent signaling pathways

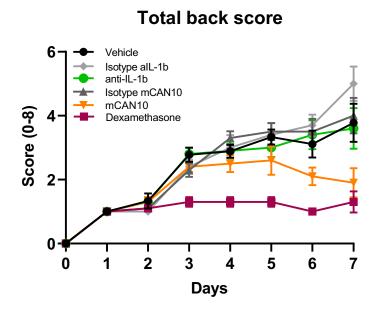
IL1RAP binding and signaling inhibition

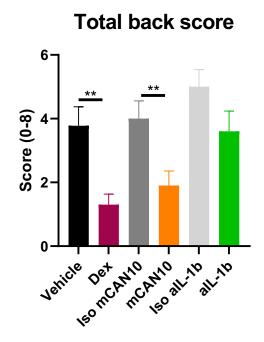

Engineered to minimize Fc \(\gamma \) Binding


- → The CAN10 antibody is developed as a therapy for inflammatory/autoimmune diseases
- → CAN10 blocks all signaling pathways mediated by IL1RAP and does not induce antibody-dependent cell killing
- → Conceptual studies in vitro and in vivo with the aim to understand the potential of IL1RAP targeting
- ightarrow Development focused on myocarditis and systemic sclerosis

IL1RAP inhibition is a potent strategy to block inflammation

MSU-induced peritonitis (i.p. injection with MSU-crystals, measure cells and cytokines after 6h)

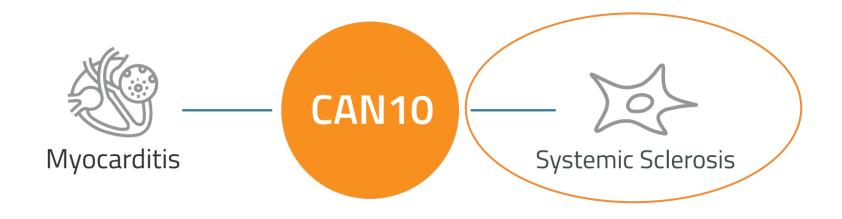

...in a way that is not recapitulated by $IL1\alpha/\beta$ -blockade alone

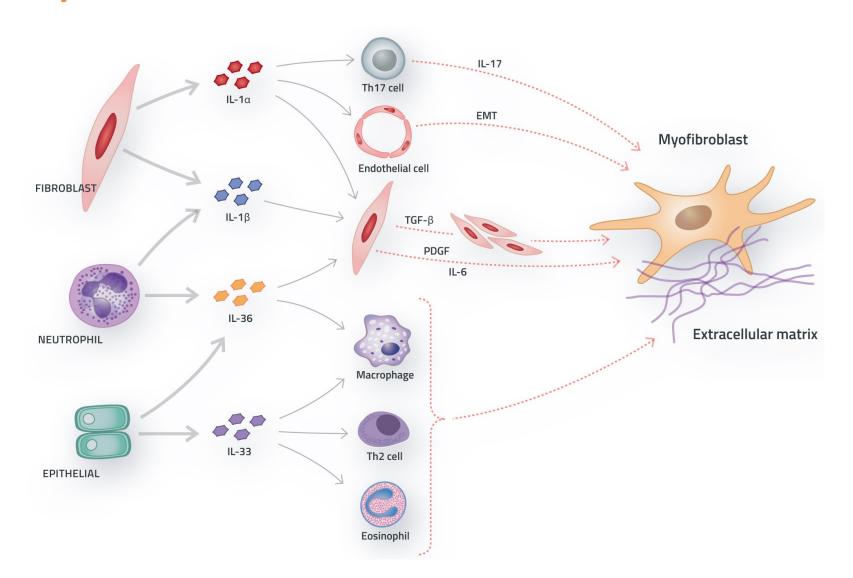

MSU, monosodium urate IL1RA/anakinra, blocks IL1 α/β signaling

IL1RAP inhibition modulates local and systemic inflammation

IMQ-induced Psoriasis (topical daily administration of IMQ, biweekly i.p treatment with ab or daily topical with dex)

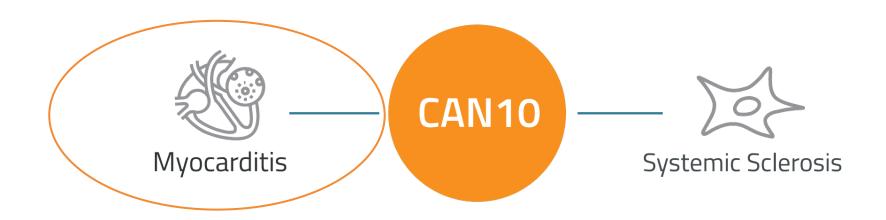
- Skin inflammation involves IL1, IL33 and IL36
- Experiments performed to study inhibition of local and systemic inflammation by systemic antibody
- CAN10 is a feasible treatment for skin inflammation



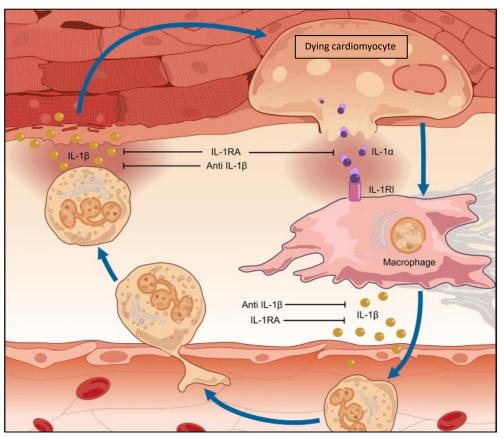

CAN10 – indications and preclinical development

CAN10 – indications and preclinical development

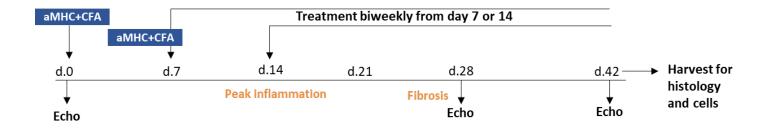
Systemic sclerosis and fibrotic disease

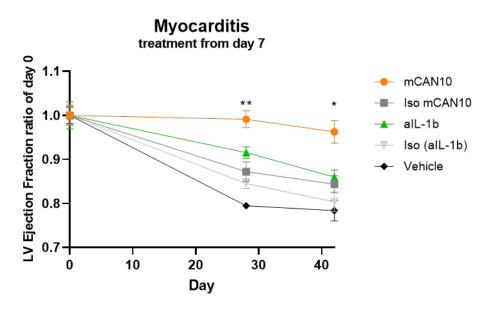

- → Characterized by diffuse fibrosis and vascular abnormalities in the skin, joints, and internal organs
- → Lung fibrosis and Pulmonary Arterial Hypertension often accounts for death
- → IL1/33/36 are involved in several aspects of fibrosis
- → Experiments on human tissue and animal models ongoing, results to be presented at a scientific conference

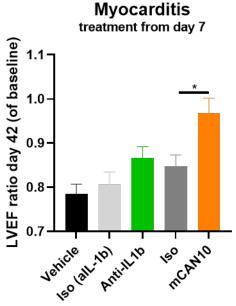
CAN10 – indications and preclinical development


CAN10 – indications and preclinical development

The IL-1 family in Cardiovascular

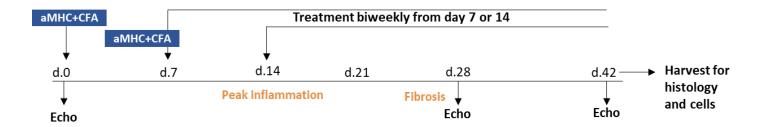

- Inflammation

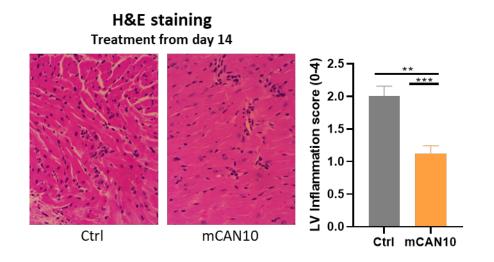

 → Inflammation of muscular tissues of the heart that can lead to fibrosis and loss of contractile function
- → IL-1 is central to the development of cardiac inflammation and is a potential driver of Myocarditis, ongoing clinical trial with Anakinra in patients with Acute Myocarditis
- \rightarrow IL-33 and IL36 are emerging in cardiovascular disease but is not as thoroughly described
- → Does IL1RAP inhibition have benefits compared to only IL-1 blockade?

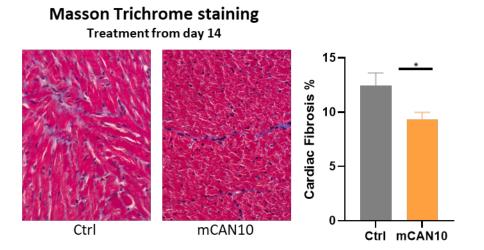


Da Luca et al., Front Immunol. 2018

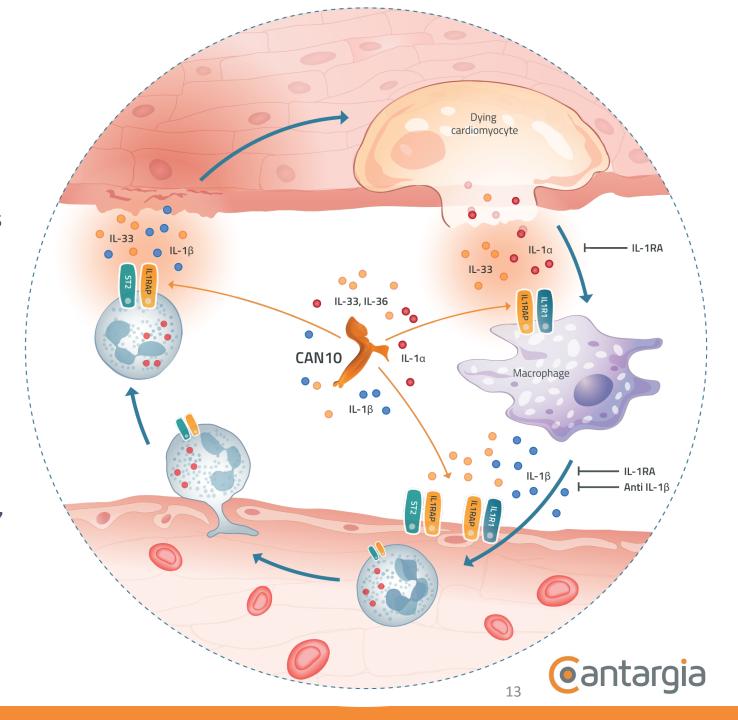
mCAN10 improves heart function in experimental autoimmune myocarditis







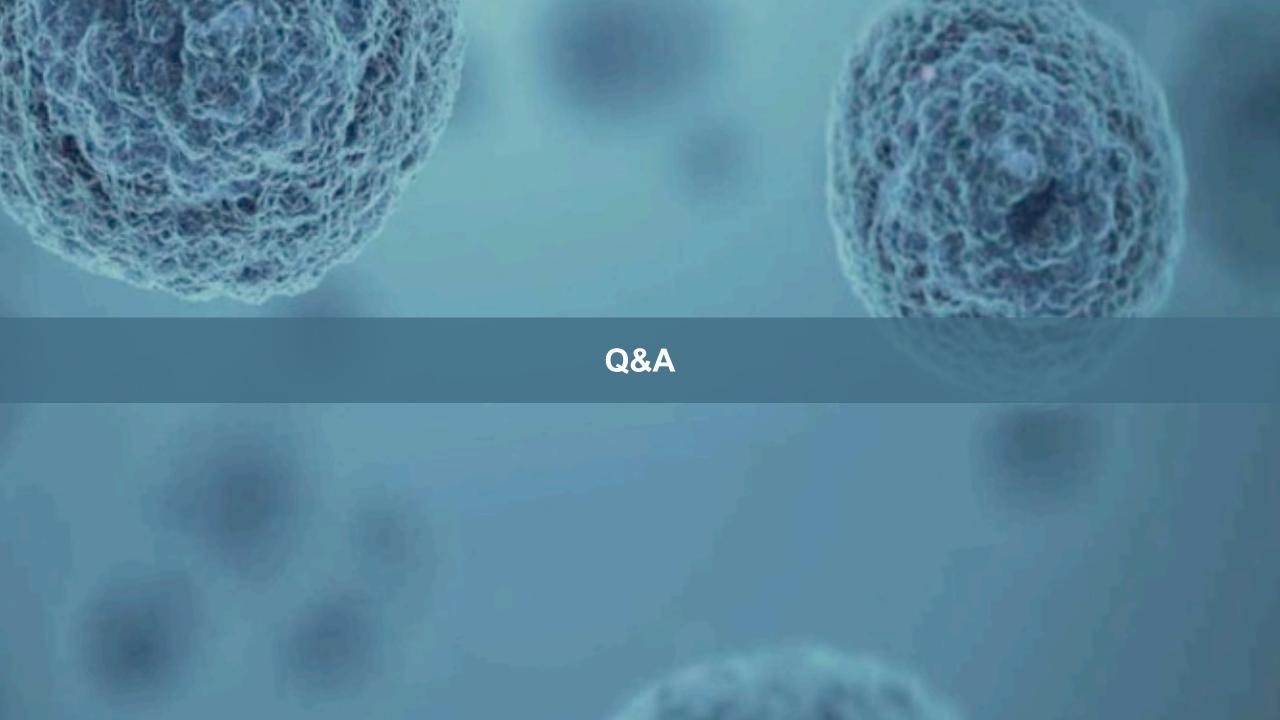
mCAN10 reduces inflammation and fibrosis in experimental autoimmune myocarditis



CAN10 – summary

- \rightarrow CAN10 blocks IL1 α/β , IL33 and IL36 $\alpha/\beta/\gamma$ signaling through targeting of IL1RAP and is in late-stage preclinical development for clinical trials
- \rightarrow Blocking IL1RAP is a potent antiinflammatory strategy that is qualitatively different from pure IL1 α/β blockade.
- → IL1RAP-blockade counteracts inflammation, fibrosis and the decrease in heart function with additional value compared to IL-1 blockade or prednisone

CAN10 – milestones


2021

- → CMC development and production for safety and clinical studies
- \rightarrow Completion of safety program
- → Interactions with health authorities

2022

- ightarrow CTA submissions
- → Initiation of clinical studies
- → Preparations for clinical development in myocarditis and/or SSc

