

The CAN04 antibody targets IL1RAP and mediates tumor growth inhibition and increased cisplatin sensitivity in a patient-derived xenograft model for non-small cell lung cancer

David Liberg, VP Cancer Research

IL1RAP – Interleukin-1 Receptor Accessory Protein

IL1RAP – Interleukin-1 Receptor Accessory Protein

Wang et al., Structural insights into the assembly and activation of IL-1 β with its receptors, Nature Immunol 2010

CANO4 (nidanilimab), a humanized and ADCCenhanced IgG1 antibody targeting IL1RAP

Ab (µg/ml)

IL1RAP is expressed in many solid tumors and hematological cancers

Initial focus (in house data, external data, medical need etc)

IL1 α and IL1 β are both present in NSCLC

IL1α IL1β Ctrl

The LU2503 NSCLC PDX model expresses IL1RAP, IL1R1, IL1 α and I1 β

CAN04 blocks IL-1 signaling and reduces tumor growth in the LU2503 PDX model

The CAN04 and cisplatin combination is more effective and less toxic that cisplatin alone

Targeting both tumor and endogenous IL1RAP allows synergistic effects with Cisplatin

Summary

- CAN04 (nidanilimab) is a humanized, ADCC-enhanced, IgG1 antibody targeting IL1RAP and thereby IL-1 signaling.
- IL1RAP, IL-1 α and IL-1 β are all present in non-small cell lung cancer.
- CAN04 treatment inhibits IL-1 β mediated effects and tumor growth in an IL1RAP⁺ NSCLC PDX model.
- The CAN04/cisplatin combination has improved efficacy to either treatment alone and reduced toxicity compared to cisplatin only.
- Combination effects are even stronger in a syngeneic model, in line with both a tumor cell intrinsic effect of IL1RAP targeting and an effect on the tumor microenvironment.

CANTARGIA

Camilla Rydberg Millrud Janne Persson Liselotte Larsson Lars Thorsson Susanne Magnusson Christer Svedman Göran Forsberg

TRULY LABS

Hanna Falk Håkansson Janne Persson Karin von Wachenfeldt

LUND UNIVERSITY

Thoas Fioretos Marcus Järås

INNOVAGEN

Kjell Sjöström

Collaborators from CROWN BIOSCIENCE and ICOSAGEN

